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Abstract Sea oats (Uniola paniculata L.) are the dominant
plant in the pioneer coastal dunes of Florida and are widely
used for dune restoration. DNA analysis has revealed
significant ecotypic variation among Atlantic and Gulf
coast populations of sea oats, but little is known about the
diversity of the arbuscular mycorrhizal (AM) communities
present in the dune systems. In a prior greenhouse study, we
evaluated the functional diversity that exists among the AM
fungal communities from divergent Florida dunes and
selected effective host/AM fungus combinations for further
study. The objective of this study was to evaluate the effect
of these compatible combinations on the growth of sea oats
planted at Anastasia State Recreation Area (AN) on the
Atlantic coast and St. George Island State Park (SG) on the
Gulf coast. Micropropagated sea oats from each site were
inoculated with AM fungal communities also from AN and
SG or a microbial filtrate control. The complete factorial of
treatment combinations were grown in the greenhouse for
8 weeks and outplanted to the AN and SG field sites. After
1 year, root colonization was evaluated, and after 2 years,
root colonization, shoot and root dry masses, and shoot-
and root-P contents were determined. Overall, sea oats
planted at AN had greater percent root colonization, shoot

dry mass, and shoot-P content than those planted at SG. At
AN, the local sea oat ecotype responded more to the fungal
community from the same site relative to shoot dry mass
and shoot-P content. At SG, the local fungal community
produced larger plants with greater P content regardless of
the origin of the host. We conclude that sea oat productivity
is responsive to AM fungal ecotype as well as host ecotype,
and fungal origin should therefore be taken into account
when planning sea oat plantings on coastal dunes.
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Introduction

Coastal plants provide an effective defense against the
erosive forces of wind and waves (Woodhouse 1982), and
revegetation is the method of choice for the restoration of
sand dunes (Dean 1983). In the southeastern USA, sea oats
(Uniola paniculata L.) are the dominant plant in the pioneer
zone of coastal sand dunes and are widely used in dune
restoration (Woodhouse et al. 1968).

Plant and microbial variation likely have roles in the
establishment and growth of sea oats on coastal dunes.
DNA analysis has revealed that sea oats on Florida coasts
are genetically different (Ranamukhaarachchi et al. 2000).
Ecotypic variation was reported both within and between
sea oat populations of the same and different coasts. Sea
oats on the Gulf coast displayed the greatest genetic
variations, while those on the Atlantic coast had lower
genetic differentiation. Less is known about the diverse
communities of arbuscular mycorrhizal (AM) fungi present
in these dune systems (Sylvia 1986). However, genetic
variation among AM fungi has been reported by others
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(Boerner 1990; Boyetchko and Tewari 1995; Monzon and
Azcon 1996; Stahl et al. 1990; Stahl and Smith 1984),
supporting the hypothesis that ecotypic variation among
AM fungi may have an impact on the establishment and
growth of coastal plants.

Scientists at the University of Florida (Sylvia et al. 2003;
Valero-Aracama et al. 2007) are developing protocols for
coastal dune restoration that use micropropagated and AM
fungus inoculated sea oats. Coastal sand dunes are
generally characterized by low nutrient availability and
natural disturbances and are likely candidates to benefit
from mycorrhizal applications (O’Keefe and Sylvia 1991).
Previous studies documented growth response of sea oats to
AM inoculation in commercial nurseries and coastal sand
dunes (Sylvia 1989; Sylvia et al. 1993). Furthermore, in a
prior greenhouse study, we evaluated the functional
diversity that exists among communities of AM fungi
present in divergent Florida dunes and selected effective sea
oat/AM fungus combinations for field testing (Sylvia et al.
2003). The objective of the present study was to evaluate
the response of these compatible sea oat/AM fungal
ecotype combinations on the establishment and growth of
sea oats planted on selected Atlantic and Gulf coast sand
dunes.

Materials and methods

The Atlantic coast site was at Anastasia State Recreation
Area (AN) located in northeastern Florida (29°53′15″N,
081°17′23″W), and the Gulf coast site was at St. George
Island State Park (SG) located in northwestern Florida (29°
39′20″N, 084°52′53″W). The pH and water-extractable
phosphorus (P, μg ml−1) concentrations, respectively, at
each location were: AN, 8.3 and 25.9 and SG, 7.6 and 5.0.

The sea oat/AM fungus treatment combinations were as
follows: Sea oat ecotypes (AN-07-4-1 from the Atlantic
coast and SG16-1-2 from the Gulf coast) were inoculated
with two AM fungal communities (AN9 from the Atlantic
coast and SG1 from the Gulf coast) and a control treatment.
Micropropagated sea oats (Philman and Kane 1994) were
placed in a greenhouse on 10 July 2002 for 8 weeks at 34°
C and 22°C maximum and minimum mean temperatures,
respectively, and mean maximum photosynthetic photon
flux density of 1,240 μmol m−2 s−1. The growth medium
was acid-washed builder sand mixed 1:1 with coarse
vermiculite, moistened, and pasteurized twice at 85°C for
8 h with 48 h between heating. The medium was then
placed into containers (4-cm diameter by 18-cm depth) and
mixed with 10 g (dry mass basis) of soil and colonized
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Fig. 1 Effect of sea oat ecotype
and AM fungal community on
root colonization after one (a)
and two (b) growing seasons,
shoot dry mass (c), and shoot-P
content (d) at harvest of sea oats
planted at an Atlantic coast site.
Bars represent the means of 12
replicates ± SEM
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roots from sweet corn (Zea mays L.) pot cultures of the
respective AM fungal community. The control treatment
received autoclaved pot culture inocula from both fungal
communities amended with live microbial filtrate (<20-μm
pore size) to reintroduce a portion of the microflora other
than AM fungi (Ames et al. 1987). Before the seedlings
were outplanted, ten replicates per treatment combination
were selected randomly to assess mycorrhizal colonization
and shoot dry mass before outplanting.

Sea oat seedlings were transplanted at the AN site on
5 October 2002 and at the SG site on 12 October 2002.
Five blocks were initially established at each site, with at
least 50 m between blocks. The six treatment combinations
(two hosts: AN-07-4-1 and SG16-1-2; three AM inocula:
AN9, SG1, and control) were placed randomly within
blocks, each consisting of a plot of 16 plants (4×4 rows) on
50-cm centers with 10 m between plots. The planting holes
were 10 cm deep, and plants were fertilized with a time-
release fertilizer (Osmocote®, 13N-4P-5K, Grace Sierra
Horticulture Products, Milpitas, CA, USA) at a rate of
1.24 g per plant.

After 1 year (19 and 26 October 2003, respectively, for
AN and SG sites), cores (542 cm3 each) were taken to a
depth of 30 cm adjacent to four randomly selected and

marked sea oat plants from each plot. After 2 years (17 and
24 October 2004, respectively, for AN and SG sites), the
same four plants from each plot were excavated by
removing approximately 8 l of roots and surrounding soil.
The samples, which included growth from rhizomes and the
original plants, were sealed in labeled plastic bags and
placed in an ice chest for transport back to the laboratory.

The roots were removed from samples by wet sieving,
and fresh weights were determined. Roots were then cut
into 2.5-cm lengths, and subsamples (0.5 g) were processed
for assessment of AM colonization (Sylvia 1994). Shoots
and the remainder of the roots were dried at 68°C, weighed,
ground to pass a 20-mesh screen, dry-ashed, and P content
determined (Murphy and Riley 1962).

Data were statistically analyzed using PROC MIXED
and PROC GLM (SAS Institute 2003) to test for main
effects and their interactions on all response variables.
Population normality was tested for each variable before
using parametric statistics for comparison testing. The field
sites were unfortunately damaged during the active hurri-
cane seasons of 2003 and 2004. Two blocks were destroyed
at SG, while the damage at AN was scattered among
blocks. Samples were combined from three less-damaged
AN blocks to permit balanced data analyses.
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Fig. 2 Effect of sea oat ecotype
and AM fungal community on
root colonization after one (a)
and two (b) growing seasons,
shoot dry mass (c), and shoot-P
content (d) at harvest for sea
oats planted at Gulf coast site.
Bars represent the means of 12
replicates ± SEM
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Results and discussion

Plant analysis just before outplanting indicated that inocula-
tion with the Atlantic coast mycorrhizal community resulted
in greater root colonization (33%±5.4) and shoot dry mass
(640 mg±97.7) than with the Gulf coast mycorrhizal
community (13%±2.7 and 370 mg±67.5, respectively).
These results are in contrast to our prior greenhouse study
(Sylvia et al. 2003) where SG1 resulted in superior plant
growth across plant ecotypes from all locations. Nonethe-
less, all AM fungal inoculated plants were colonized at
outplanting, and controls were not colonized.

At the AN site on the Atlantic coast, shoot dry mass (P=
0.0498) and shoot-P content (P=0.0013) varied significant-
ly with treatment combination (Fig. 1). No significant
differences were found between treatments relative to AM
fungal colonization during the first and second year nor for
root dry mass or root-P content (data not presented),
probably due to the establishment of mycorrhizal associa-
tions native to the habitat. The local sea oat ecotype, AN-
07-4-1, responded more to the fungal ecotype, AN9, from
the same site relative to shoot dry mass and shoot-P content
than did the sea oat ecotype from SG. In contrast, the SG
sea oat ecotype tended to have greater shoot mass and P-
content when inoculated with the fungal community from
the same site, but this was less than when the plant, fungus,
and site were all the same.

At the SG site on the Golf coast, shoot dry mass (P=
0.0005) and shoot-P content (P=0.001) were also signifi-
cantly affected by the treatment combinations (Fig. 2). At
this site, the SG fungal community produced larger plants
with greater P content regardless of the origin of the host
plant.

This study confirms that host productivity is responsive
to AM fungal ecotype and supports previous studies in the
same region that demonstrated growth responses to mycor-
rhizal inoculation (Sylvia et al. 2003; Sylvia and Burks
1988). The evidence regarding the host ecotype was mixed,
with a strong host impact at AN, but less so at SG. Other
studies in different environments and with different hosts
also suggest specificity between the plant host and the
mycorrhizal fungi that may be ecologically important
(Aldrich-Wolfe 2007; Jumpponen et al. 2004; Talukdar
and Germida 1994; Zhu et al. 2000).

The results of this study could be used by federal, state,
and local authorities to develop better protocols for the
restoration of Atlantic and the Gulf coast dunes. For
maintaining the stability of Florida coastal sand dune
ecosystems, the ecotypic variation of AM fungi may be
just as important as the ecotypic variation that occurs in the
host plant. Resource managers should be cognizant of sea
oat and AM fungal ecotypic compatibility with the planting
site when planning dune restoration projects.
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